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1 Instructor: Daniel Llamocca 

Unit 1 - Computer Arithmetic 
 

FIXED-POINT (FX) ARITHMETIC 
 

INTEGER REPRESENTATION 
▪ 𝑛 − 𝑏𝑖𝑡 number: 𝑏𝑛−1𝑏𝑛−2 … 𝑏0. Special case of FX numbers with p=0. 

▪ For a review on integer number representations (SM, 1C, 2C), refer to ECE4710 – Computer Arithmetic. 

 

 UNSIGNED SIGNED 

Decimal 
Value 

𝐷 = ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

 𝐷 = −2𝑛−1𝑏𝑛−1 + ∑ 𝑏𝑖2𝑖

𝑛−2

𝑖=0

 

Range of 
values 

[0, 2𝑛 − 1] [−2𝑛−1, 2𝑛−1 − 1] 

 

FIXED POINT REPRESENTATION 
▪ Typical representation [𝑛  𝑝]: 𝑛 − 𝑏𝑖𝑡 number with 𝑝 fractional bits: 𝑏𝑛−𝑝−1𝑏𝑛−𝑝−2 … 𝑏0. 𝑏−1𝑏−2 … 𝑏−𝑝 

▪ MATLAB/Octave scripts for Fixed-Point to Decimal conversion, and for Decimal to Fixed-Point conversion: 

script_fx2dec_converter.zip: my_fxdec.m, my_dec2fx, my_bitcmp.m. 

 
 
 
 

 UNSIGNED SIGNED 

Decimal 
Value 

𝐷 = ∑ 𝑏𝑖2𝑖

𝑛−𝑝−1

𝑖=−𝑝

 𝐷 = −2𝑛−𝑝−1𝑏𝑛−𝑝−1 + ∑ 𝑏𝑖2𝑖

𝑛−𝑝−2

𝑖=−𝑝

 

Range of 
values 

[
0

2𝑝 ,
2𝑛 − 1

2𝑝 ] = [0, 2𝑛−𝑝 − 2−𝑝] [
−2𝑛−1

2𝑝 ,
2𝑛−1 − 1

2𝑝 ] = [−2𝑛−𝑝−1, 2𝑛−𝑝−1 − 2−𝑝] 

Dynamic 
Range 

|2𝑛−𝑝 − 2−𝑝|

|2−𝑝|
= 2𝑛 − 1 

(𝑑𝐵) = 20 × log10(2𝑛 − 1) 

|−2𝑛−𝑝−1|

|2−𝑝|
= 2𝑛−1 

(𝑑𝐵) = 20 × log10(2𝑛−1) 

Resolution 
(1 LSB) 

2−𝑝 2−𝑝 

 
▪ Dynamic Range: 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 =
𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑎𝑏𝑠. 𝑣𝑎𝑙𝑢𝑒

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑎𝑏𝑠. 𝑣𝑎𝑙𝑢𝑒
 

 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒(𝑑𝐵) = 20 × log10(𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒) 
 
▪ Unsigned numbers: Range of Values 
 
 
 
 
 
▪ Signed numbers: Range of Values 
 
 
 
 
▪ Examples: 

 FX Format Range Dynamic Range (dB) Resolution 

UNSIGNED 

[8 7] [0, 1.9922] 48.13 0.0078 

[12 8] [0, 15.9961] 72.24 0.0039 

[16 10] [0, 63.9990] 96.33 0.0010 

SIGNED 

[8 7] [-1, 0.9921875] 42.14 0.0078 
[12 8] [-8, 7.99609375] 66.23 0.0039 

[16 10] [-64, 63.9990234375] 90.31 0.0010 

n-p p

n

... ...

... ...

http://www.secs.oakland.edu/~llamocca/Courses/ECE4710/Notes%20-%20Unit%202.pdf
http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_fx2dec_converter.zip
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FIXED-POINT ADDITION/SUBTRACTION 
▪ Addition of two numbers represented in the format [𝑛  𝑝]:  

 
𝐴 × 2−𝑝 ± 𝐵 × 2−𝑝 = (𝐴 ± 𝐵) × 2−𝑝  
We perform integer addition/subtraction of 𝐴 and 𝐵. We just need to interpret the result 

differently by placing the fractional point where it belongs. Notice that the hardware is 
the same as that of integer addition/subtraction. 
 
When adding/subtracting numbers with different formats [𝑛  𝑝] and [𝑚  𝑘], we first need to align the fractional point so that 
we use a format for both numbers: it could be [𝑛  𝑝], [𝑚  𝑘], [𝑛 − 𝑝 + 𝑘  𝑘], [𝑚 − 𝑘 + 𝑝  𝑝]. This is done by zero-padding and 

sign-extending where necessary. In the figure below, the format selected for both numbers is [𝑚  𝑘], while the result is in 

the format [𝑚 + 1  𝑘]. 
 
 
 
 
 
 
 

Important: The result of the addition/subtraction requires an extra bit in the 
worst-case scenario. In order to correctly compute it in fixed-point 
arithmetic, we need to sign-extend (by one bit) the operators prior to 
addition/subtraction. 
 
 
 
Multi-operand Addition: 𝑁 numbers of format [𝑛  𝑝]: The total number of bits is given by : 𝑛 + ⌈log2 𝑁⌉ (this can be 

demonstrated by an adder tree). Notice that the number of fractional bits does not change (it remains 𝑝), only the integer 
bits increase by ⌈log2 𝑁⌉, i.e., the number of integer bits become 𝑛 − 𝑝 + ⌈log2 𝑁⌉. 
 
 

▪ Examples: Calculate the result of the additions and subtractions for the following fixed-point numbers. 
 

UNSIGNED SIGNED 

       0.101010 + 

      1.0110101          

        1.00101 - 

      0.0000111 

        10.001 + 

      1.001101          

        0.0101 - 

     1.0101101          

        10.1101 + 

         1.1001 

          100.1 + 

      0.1000101 

     1000.0101 - 

     111.01001          

      101.0001 + 

     1.0111101          

 
Unsigned: 
 
 
 
 
 
 
 
Signed: 
 
 
 
 
 
 
 
 
 
 
  

n-p p

m-k k

m-k+1 k

+

n-p p

m-k k

n-p p

m-k k

m-k+1 k

+

n-p p

n-p p

n-p+1 p

+

0.1 0 1 0 1 0 0 +

1.0 1 1 0 1 0 1

1 0.0 0 0 1 0 0 1

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=1

c 2
=0

c 1
=0

c 0
=0

1.0 0 1 0 1 0 0 -

0.0 0 0 0 1 1 1

1.0 0 0 1 1 0 1

b
7=

0
b

6=
0

b
5=

0
b

4=
1

b
3=

1
b

2=
1

b
1=

1
b

0=
0

1 0.1 1 0 1 +

1.1 0 0 1

1 0 0.0 1 1 0

c 6
=1

c 5
=1

c 4
=1

c 3
=0

c 2
=0

c 1
=1

c 0
=0

1 0 0.1 0 0 0 0 0 0 +

0.1 0 0 0 1 0 1

1 0 1.0 0 0 0 1 0 1

c 1
0=

0
c 9

=0
c 8

=0
c 7

=1
c 6

=0
c 5

=0
c 4

=0
c 3

=0
c 2

=0
c 1

=0
c 0

=0

1 1 0.0 0 1 0 0 0 +

1 1 1.0 0 1 1 0 1

1 0 1.0 1 0 1 0 1

c 9
=1

c 8
=1

c 7
=0

c 6
=0

c 5
=0

c 4
=1

c 3
=0

c 2
=0

c 1
=0

c 0
=0

0.0 1 0 1 0 0 0 -

1.0 1 0 1 1 0 1

c 8
=0

c 7
=0

c 6
=0

c 5
=0

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

0.0 1 0 1 0 0 0 +

0.1 0 1 0 0 1 1

0.1 1 1 1 0 1 1

1 0 0 0.0 1 0 1 0 -

1 1 1 1.0 1 0 0 1

c 9
=0

c 8
=0

c 7
=0

c 6
=0

c 5
=1

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0

1 0 0 0.0 1 0 1 0 +

0 0 0 0.1 0 1 1 1

1 0 0 1.0 0 0 0 1

1 0 1.0 0 0 1 0 0 0 +

1 1 1.0 1 1 1 1 0 1

1 0 0.1 0 0 0 1 0 1

c 1
0
=1

c 9
=1

c 8
=1

c 7
=0

c 6
=1

c 5
=1

c 4
=1

c 3
=0

c 2
=0

c 1
=0

c 0
=0
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FIXED-POINT MULTIPLICATION 
 

▪ Unsigned multiplication 
Multiplication of two signed numbers represented with different formats [𝑛  𝑝], [𝑚 𝑘]: 
 
 
 
 
 
(𝐴 × 2−𝑝) × (𝐵 × 2−𝑘) = (𝐴 × 𝐵) × 2−𝑝−𝑘. We can perform integer multiplication of A and B and then place the fractional 
point where it belongs. The format of the multiplication result is given by [𝑛 + 𝑚  𝑝 + 𝑘]. There is no need to align the 

fractional point of the input quantities. 
 
Special case: 𝑚 = 𝑛, 𝑘 = 𝑝 
(𝐴 × 2−𝑝) × (𝐵 × 2−𝑝) = (𝐴 × 𝐵) × 2−2𝑝. Here, the format of the 
multiplication result is given by [2𝑛  2𝑝]. 
 
✓ Multiplication procedure for unsigned integer numbers: 
 

 
 
 
 

Example: when multiplying, we treat the numbers as integers. Only 
when we get the result, we place the fractional point where it belongs.  

 
 
 
 
 
 
 
 

 
 

▪ Signed Multiplication: We first take the absolute value of the operands. Then, if at least one of the operands was negative, 
we need to change the sign of the result. We then place the fractional point where it belongs. 
 
Examples: 

  

n-p p

m-k k

x

n+m-p-k p+k

a3    a2    a1    a0 x

b3    b2    b1    b0

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

p7    p6    p5   p4    p3    p2    p1    p0

1 0 1 1 x

1 1 0 1  

1 0 1 1  

0 0 0 0    

1 0 1 1      

1 0 1 1        

1 0 0 0 1 1 1 1  

2.75 = 10.11 x

6.5 = 110.1  

17.875 = 1 0 0 0 1.1 1 1  

1 1 0 1 0 1 x

1 0 1  

1 1 0 1 0 1  

0 0 0 0 0 0     

1 1 0 1 0 1       

1 0 0 0 0 1 0 0 1  

01.001 x

1.001001

1 1 0 1 1 1 x

1 0 0 1  

1 1 0 1 1 1  

0 0 0 0 0 0    

0 0 0 0 0 0      

1 1 0 1 1 1        

1 1 1 1 0 1 1 1 1  

01.001 x

0.110111  

0.1 1 1 1 0 1 1 1 1

1.0 0 0 0 1 0 0 0 1

10.0001 x

01.01001  

1 0 1 0 0 1 x

1 1 1 1 1  

1 0 1 0 0 1  

1 0 1 0 0 1    

1 0 1 0 0 1      

1 0 1 0 0 1        

1 0 1 0 0 1         

1 0 0 1 1 1 1 0 1 1 1  

01.1111 x

01.01001  

0 1 0.0 1 1 1 1 0 1 1 1 

1 0 1.1 0 0 0 0 1 0 0 1

1000.000 x

10.010101

01000.000 x

01.101011  

1 1 0 1 0 1 1 x

1 0 0 0 0 0 0  

0 0 0 0 0 0 0  

1 1 0 1 0 1 1      

1 1 0 1 0 1 1 0 0 0 0 0 0  

0 1 1 0 1.0 1 1 0 0 0 0 0 0 

0.1101010 x

11.1111011

0.110101 x

0.0000101  

0.0 0 0 0 1 0 0 0 0 1 0 0 1

1.1 1 1 1 0 1 1 1 1 0 1 1 1
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FIXED-POINT DIVISION 
▪ Unsigned integer division: 

The division of two unsigned integer numbers 𝐴 𝐵⁄  (where 𝐴 is the dividend and 𝐵 the divisor), results in a quotient 𝑄 and 

a remainder 𝑅, where 𝐴 = 𝐵 × 𝑄 + 𝑅. Most divider architectures output 𝑄 and 𝑅. 

 
 
 
 
 
 
 
 
 
 
 
 
▪ For 𝑛-bits dividend (𝐴) and 𝑚-bits divisor (𝐵): 

✓ The largest value for 𝑄 is 2𝑛 − 1 (by using 𝐵 = 1). The smallest value for 𝑄 is 0. So, we use 𝑛 bits for 𝑄. 

✓ The remainder 𝑅 is a value between 0 and 𝐵 − 1. Thus, at most we use 𝑚 bits for 𝑅.  
✓ If 𝐴 = 0, 𝐵 ≠ 0, then 𝑄 = 𝑅 = 0. 

✓ If 𝐵 = 0, we have a division by zero. The result is undetermined. 

▪ In computer arithmetic, integer division usually means getting 𝑄 = ⌊𝐴 𝐵⁄ ⌋. 
 
▪ Unsigned FX Division: 𝐴𝑓 𝐵𝑓⁄  

We first need to align the numbers so that they have the same number of fractional bits, then divide them treating them as 
integers. The quotient will be integer, while the remainder will have the same number of fractional bits as 𝐴𝑓. 

✓ 𝐴𝑓 is in the format [𝑛𝑎 𝑎]. 𝐵𝑓 is in the format [𝑛𝑏 𝑏]. We work with 𝑎 ≥ 𝑏. If 𝑎 < 𝑏, just append 0’s to 𝐴𝑓 so that 𝑎 = 𝑏. 

 
Step 1: For 𝑎 ≥ 𝑏, we align the fractional points and then get the integer numbers 𝐴 and 𝐵, which result from: 

𝐴 = 𝐴𝑓 × 2𝑎 𝐵 = 𝐵𝑓 × 2𝑎 

Step 2: Integer division: 
𝐴

𝐵
=

𝐴𝑓

𝐵𝑓
 

The numbers 𝐴 and 𝐵 are related by the formula: 𝐴 = 𝐵 × 𝑄 + 𝑅, where 𝑄 and 𝑅 are the quotient and remainder of the 

integer division of 𝐴 and 𝐵. Note that 𝑄 is also the quotient of 
𝐴𝑓

𝐵𝑓
. 

Step 3: To get the correct remainder of 
𝐴𝑓

𝐵𝑓
, we re-write the previous equation: 

𝐴𝑓 × 2𝑎 = (𝐵𝑓 × 2𝑎) × 𝑄 + 𝑅 → 𝐴𝑓 = 𝐵𝑓 × 𝑄 + (𝑅 × 2−𝑎) 

Then: 𝑄𝑓 = 𝑄, 𝑅𝑓 = 𝑅 × 2−𝑎 

 

Example: 
1010,011

11,1
 

Step 1: Alignment, 𝑎 =  3 
1010,011

11,1
=

1010,011

11,100
=

1010011

11100
 

Step 2: Integer Division 
1010011

11100
 1010011 = 11100(10) + 11011 →  𝑄 = 10, 𝑅 = 11011 

Step 3: Get actual remainder: 𝑅 × 2−𝑎 𝑅𝑓 = 11,011 

Verification: 1010,011 = 11,1(10) + 11,011, 𝑄𝑓 = 10, 𝑅𝑓 = 11,011 

 
✓ Adding precision to 𝑄𝑓 (quotient of 𝐴𝑓 𝐵𝑓⁄ ): 

The previous procedure only gets 𝑄 as an integer. What if we want to get the division result with 𝑥 number of fractional 
bits? To do so, after alignment, we append 𝑥 zeros to 𝐴𝑓 × 2𝑎 and perform integer division.  

𝐴 = 𝐴𝑓 × 2𝑎 × 2𝑥 𝐵 = 𝐵𝑓 × 2𝑎 

𝐴𝑓 × 2𝑎+𝑥 = (𝐵𝑓 × 2𝑎) × 𝑄 + 𝑅 → 𝐴𝑓 = 𝐵𝑓 × (𝑄 × 2−𝑥) + (𝑅 × 2−𝑎−𝑥) 

Then: 𝑄𝑓 = 𝑄 × 2−𝑥 , 𝑅𝑓 = 𝑅 × 2−𝑎−𝑥 

 

Example: 
1010,011

11,1
 with 𝑥 = 2 bits of precision 

Step 1: Alignment, 𝑎 =  3 
1010,011

11,1
=

1010,011

11,100
=

1010011

11100
 

Step 2: Append 𝑥 = 2 zeros 
1010011

11100
=

1010011𝟎𝟎

11100
 

00001111

10001100

1001

10001

1001

10000

1001

1110

1001

101

1001 AB

Q

R

ALGORITHM

R = 0

for i = n-1 downto 0

left shift R (input = ai)

if R  B

qi = 1, R  R-B

else

qi = 0

end

end

15

140

90

50

45

5

9 AB

Q

R
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Step 3: Integer Division 
1010011𝟎𝟎

11100
 1010011𝟎𝟎 = 11100(1011) + 11000, 𝑄 = 1011, 𝑅 = 11000 

Step 4: Get actual remainder and 
quotient: 𝑄𝑓 = 𝑄 × 2−𝑥 , 𝑅𝑓 = 𝑅 × 2−𝑎−𝑥 

𝑄𝑓 = 10,11, 𝑅𝑓 = 0,11000 

Verification: 1010,01100 = 11,1(10,11) + 0,11000 

 
▪ Signed FX Division: In this case (as in the multiplication), we first take the absolute value of the operators 𝐴 and 𝐵. If 

only one of the operators is negative, the result of |𝐴| |𝐵|⁄  requires a sign change. 

Note that once the correct quotient 𝑄𝑓 with fractional bits is available, getting 𝑅𝑓 with the correct sign is not very useful. 

 
Examples: Get the division result (with 𝑥 =  4 fractional bits) for the following signed fixed-point numbers: 

✓ 
101.1001

1.011
: To positive (numerator and denominator), alignment, and then to unsigned: 𝑎 = 4: 

101.1001

1.011
=

010.0111

0.1010
≡

100111

1010
 

 

Append 𝑥 =  4 zeros: 
100111𝟎𝟎𝟎𝟎

1010
 

Unsigned integer Division: 
 

𝑄 = 111110, 𝑅 = 100 
→ 𝑄𝑓 = 11.1110 (𝑥 = 4) 

 

Final result (2C): 
101.1001

1.011
= 011.111 (this is represented as a signed number) 

 
 
 
 
 
 

✓ 
11.011

1.01011
: To positive (numerator and denominator), alignment, and then to unsigned, 𝑎 = 5: 

00.101

0.10101
=

0.10100

0.10101
≡

10100

10101
 

 

Append 𝑥 =  4 zeros: 
10100𝟎𝟎𝟎𝟎

10101
 

Unsigned integer Division: 
 

𝑄 = 1111, 𝑅 = 101 
→ 𝑄𝑓 = 0.1111(𝑥 = 4) 

 

Final result (2C): 
11.011

1.01011
= 0.1111 (this is represented as a signed number) 

 
 
 
 

✓ 
10.0110

01.01
: To positive (numerator), alignment, and then to unsigned, 𝑎 = 4: 

01.1010

01.01
=

01.1010

01.0100
≡

11010

10100
 

Append 𝑥 =  4 zeros: 
11010𝟎𝟎𝟎𝟎

10100
 

Unsigned integer Division: 
 

𝑄 = 10100, 𝑅 = 10000 

→ 𝑄𝑓 = 1.0100(𝑥 = 4)  𝑄𝑓 here is represented as an unsigned number 

 

Final result (2C): 
10.0110

01.01
= 2𝐶(01.01) = 10.11 

 

✓ 
0.101010

110.1001
: To positive (denominator), alignment, and then to unsigned, 𝑎 = 5: 

0.10101

001.0111
=

0.10101

001.01110
≡

10101

101110
 

 

Append 𝑥 =  4 zeros: 
10101𝟎𝟎𝟎𝟎

101110
 

Unsigned integer Division: 
 

𝑄 = 111, 𝑅 = 1110 
→ 𝑄𝑓 = 0.0111(𝑥 = 4) 

 

Final result (2C): 
0.101010

110.1001
= 2𝐶(0.0111) = 1.1001 

  

0000111110

1001110000

1010

10011

1010

10010

1010

10000

1010

1100

1010

100

1010

000001111

101000000

10101

100110

10101

100010

10101

11010

10101

101

10101

000010100

110100000

10100

11000

10100

10000

10100

000000111

101010000

101110

1001100

101110

111100

101110

1110

101110
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ARITHMETIC FX UNITS. TRUNCATION/ROUNDING/SATURATION 
 

ARITHMETIC FX UNITS 
▪ They are essentially the same as those integer arithmetic units. The main difference is that we need to know where to place 

the fractional point. The design must keep track of the FX format at every point of the architecture. For example, in FX 
division, we need first to perform alignment and append 𝑥 zeros for a desired precision; this incurs in slightly extra hardware. 

▪ One benefit of FX representation is that we can perform truncation, rounding and saturation on the input, intermediate, and 
output values. These operations usually require extra hardware resources. 

 
TRUNCATION  
▪ This is a useful operation when less hardware is required in subsequent operations. However 

this comes at the expense of less accuracy.  
▪ To assess the effect of truncation, use PSNR (dB) or MSE with respect to a double floating 

point result or with respect to the original [𝑛  𝑝] format. 

▪ Truncation is usually meant to be truncation of the fractional part.  However, we can also 
truncate the integer part (chop off 𝑘 MSBs). This is not recommended as it might render the number unusable. 

 
ROUNDING 

▪ This operation allows for hardware savings in subsequent 
operations at the expense of reduced accuracy. But it is 
more accurate than simple truncation. However, it requires 
extra hardware to deal with the rounding operation. 

▪ For the number 𝑏𝑛−𝑝−1𝑏𝑛−𝑝−2 … 𝑏0. 𝑏−1𝑏−2 … 𝑏−𝑝, if we want 

to chop 𝑘 bits (LSB portion), we use the 𝑏𝑘−𝑝−1 bit to 

determine whether to round. If the 𝑏𝑘−𝑝−1 = 0, we just 

truncate. If 𝑏𝑘−𝑝−1 = 1, we need to add ‘1’ to the LSB of 

the truncated result. 
 
SATURATION  
▪ This is helpful when we need to restrict the number of integer bits. Here, we are asked to 

reduce the number of integer bits by 𝑘. Simple truncation chops off the integer part by 𝑘 

bits; this might completely modify the number and render it totally unusable. Instead, in 
saturation, we apply the following rules: 
✓ If all the 𝑘 + 1 MSBs of the initial number are identical, that means that chopping by 𝑘 

bits does not change the number at all, so we just discard the 𝑘 MSBs. 

✓ If the 𝑘 + 1 MSBs are not identical, chopping by 𝑘 bits does change the number. Thus, here, if the MSB of the initial 
number is 1, the resulting (𝑛 − 𝑘)-bit number will be −2𝑛−𝑘−𝑝−1 = 10 … 0 (largest negative number). If the MSB is 0, the 

resulting (𝑛 − 𝑘)-bit number will be 2𝑛−𝑘−𝑝−1 − 2−𝑝 = 011 …1 (largest positive number).  

 
Examples: Represent the following signed FX numbers in the signed fixed-point format: [8 7]. You can use rounding or 

truncation for the fractional part. For the integer part, use saturation. 
 
▪ 1,01101111: 

To represent this number in the format [8 7], we keep the integer bit, and we can only truncate or round the last LSB: 

After truncation: 1,0110111  
After rounding: 1,0110111 + 1 = 1,0111000 

 
▪ 11,111010011: 

Here, we need to get rid of on MSB and two LSBs. Let’s use rounding (to the next bit). 
Saturation in this case amounts to truncation of the MSB, as the number won’t change if we remove the MSB. 
After rounding: 11,1110100 + 1 = 11,1110101 

After saturation: 1,1110101 

 
▪ 101,111010011: 

Here, we need to get rid of two MSB and two LSBs.  
Saturation: Since the three MSBs are not the same and the MSB=1 we need to replace the number by the largest negative 
number (in absolute terms) in the format [8 7]: 1,0000000 

 
▪ 011,1111011011: 

Here, we need to get rid of two MSB and three LSBs.  
Saturation: Since the three MSBs are not identical and the MSB=0, we need to replace the number by the largest positive 
number in the format [8 7]: 0,1111111 
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FLOATING-POINT (FP) ARITHMETIC 
 

FLOATING POINT REPRESENTATION 
▪ There are many ways to represent floating numbers. A common way is: 
 

𝑋 = ±𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 2𝑒 

 
 
▪ Exponent 𝑒: Signed integer. It is common to encode this field using a bias: 𝑒 + 𝑏𝑖𝑎𝑠. This facilitates zero detection (𝑒 +

𝑏𝑖𝑎𝑠 = 0). Note that the exponent of the actual number is always 𝑒 regardless of the bias (the bias is just for encoding). 
𝑒 ∈ [−2𝐸−1, 2𝐸−1 − 1 ] 

 
▪ Significand: Unsigned fixed-point number. Usually normalized to a particular format, e.g.: [0, 1), [1,2). 

Format (unsigned): [𝑚  𝑝]. Range: [0,
2𝑚−1

2𝑝
] = [0, 2𝑚−𝑝 − 2−𝑝], 𝑘 =  𝑚 − 𝑝 

If 𝑘 = 0 → Significand ∈ [0,1 − 2−𝑝] = [0,1) 
If 𝑘 = 𝑚 → Significand ∈ [0, 2𝑚 − 1]. Integer significand. 

 
Another common representation of the significand is using 𝑘 = 1 and setting that bit (the MSB) to 1. Here, the range of the 
significand would be [0, 21 − 2−𝑝], but since the integer bit is 1, the values start from 1, which result in the following 

significand range: [1, 21 − 2−𝑝]. This is a popular normalization, as it allows us to drop the MSB in the encoding. 

 

IEEE-754 STANDARD 
▪ The representation is as follows: 
 

𝑋 = ±1. 𝑓 × 2𝑒 

 
▪ Significand: Unsigned FX number. The representation is normalized to 𝑠 = 1. 𝑓, where 𝑓 is the mantissa. There is always 

an integer bit 1 (called hidden 1) in the representation of the significand, so we do not need to indicate in the encoding. 
Thus, we only use 𝑓 the mantissa in the significant field. 
Significand range: [1,2 − 2−𝑝] = [1,2)  Significand format (unsigned FX): [𝑝 + 1 𝑝] 

 
▪ Biased exponent: Unsigned integer with 𝐸 bits. 𝑏𝑖𝑎𝑠 = 2𝐸−1 − 1. Thus, 𝑒𝑥𝑝 = 𝑒 + 𝑏𝑖𝑎𝑠 → 𝑒 = 𝑒𝑥𝑝 − 𝑏𝑖𝑎𝑠. We just subtract 

the 𝑏𝑖𝑎𝑠 from the exponent field in order to get the exponent value 𝑒. 

✓ 𝑒𝑥𝑝 = 𝑒 + 𝑏𝑖𝑎𝑠 ∈ [0, 2𝐸 − 1 ]. 𝑒𝑥𝑝 is represented as an unsigned integer number with 𝐸 bits. The bias makes sure that 

𝑒𝑥𝑝 ≥ 0. Also note that 𝑒 ∈ [−2𝐸−1 + 1, 2𝐸−1 ]. 
✓ The IEEE-754 standard reserves the following cases: i) 𝑒𝑥𝑝 = 2𝐸 − 1 (𝑒 = 2𝐸−1) to represent special numbers (𝑁𝑎𝑁 and 

±∞), and ii) 𝑒𝑥𝑝 = 0 to represent the zero and the denormalized numbers. The remaining cases are called ordinary 

numbers. 
 
▪ Ordinary numbers: 

Range of 𝑒: [−2𝐸−1 + 2, 2𝐸−1 − 1]. 
Max number:𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 2𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

𝑚𝑎𝑥 = 1.11 … 1 × 22𝐸−1−1 = (2 − 2−𝑝) × 22𝐸−1−1 

Min. number: 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 2𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

𝑚𝑖𝑛 = 1.00 … 0 × 2−2𝐸−1+2 = 2−2𝐸−1+2 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 =
𝑚𝑎𝑥

𝑚𝑖𝑛
=

(2 − 2−𝑝) × 22𝐸−1−1

2−2𝐸−1+2
= (2 − 2−𝑝) × 22𝐸−3 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 (𝑑𝐵) = 20 × log10{(2 − 2−𝑝) × 22𝐸−3} 

 
▪ Plus/minus Infinite: ±∞  

The 𝑒𝑥𝑝 field is a string of 1’s. This is a special case 

where 𝑒𝑥𝑝 = 2𝐸 − 1. (𝑒 = 2𝐸−1) 

±∞ = ±22𝐸−1
 

 
 

▪ Not a Number: 𝑁𝑎𝑁 

The 𝑒𝑥𝑝 field is a strings of 1’s. 𝑒𝑥𝑝 = 2𝐸 − 1. This is a 

special case where 𝑒𝑥𝑝 = 2𝐸 − 1 (𝑒 = 2𝐸−1). The only 
difference with ±∞ is that 𝑓 is a nonzero number. 
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▪ Zero: 
Zero cannot be represented with a normalized 
significand 𝑠 = 1.00 … 0 since 𝑋 = ±1. 𝑓 × 2𝑒 cannot be 

zero. Thus, a special code must be assigned to it, where 
𝑠 = 0.00 … 0 and 𝑒𝑥𝑝 = 0. Every single bit (except for the 

sign) is zero. There are two representations for zero. 
The number zero is a special case of the denormalized 

numbers, where 𝑠 = 0. 𝑓 (see below). 

 
▪ Denormalized numbers: The implementation of these numbers is optional in the standard (except for the zero). Certain 

small values that are not representable as normalized numbers (and are rounded to zero), can be represented more precisely 
with denormals. This is a “graceful underflow” provision, which leads to hardware overhead.  

These numbers have the 𝑒𝑥𝑝 field equal to zero. The 

tricky part is that 𝑒 is set to −2𝐸−1 + 2 (not −2𝐸−1 + 1, 
as the 𝑒 + 𝑏𝑖𝑎𝑠 formula states). The significand is 

represented as 𝑠 = 0. 𝑓. Thus, the floating point number 

is 𝑋 = ±0. 𝑓 × 2−2𝐸−1+2. These numbers can represent 

numbers lower (in absolute value) than 𝑚𝑖𝑛 (the 

number zero is a special case).  

Why is 𝑒 not −2𝐸−1 + 1? Note that the smallest ordinary number is 2−2𝐸−1+2. 

The largest denormalized number with 𝑒 = −2𝐸−1 + 1 is: 0.11 … 1 × 22𝐸−1−1 = (1 − 2−𝑝) × 2−2𝐸−1+1.  

The largest denormalized number with 𝑒 = −2𝐸−1 + 2 is: 0.11 … 1 × 22𝐸−1−2 = (1 − 2−𝑝) × 2−2𝐸−1+2. 

By picking 𝑒 = −2𝐸−1 + 2, the gap between the largest denormalized number and the smallest ordinary number is smaller. 

Though this specification makes the formula 𝑒 + 𝑏𝑖𝑎𝑠 = 0 inconsistent, it helps to improve accuracy. 

 
▪ Depiction of the range of values: 
 
 
 
 
 
 
 
 
 
 
 
▪ The IEEE-754-2008 (revision of IEEE-754-1985) standard defines several representations: half (16 bits, E=5, p=10), single 

(32 bits, E = 8, p = 23) and double (64 bits, E = 11, p = 52). There is also quadruple precision (128 bits) and octuple 
precision (256 bits). You can define your own representation by selecting a particular number of bits for the exponent and 
significand. The table lists various parameters for half, single and double FP arithmetic (ordinary numbers): 

 

 
Ordinary numbers Exponent 

bits (E) 
Range of 𝒆 Bias 

Dynamic 
Range (dB) 

Significand 
range 

Significand 
bits (p) Min Max 

Half 2−14 (2 − 2−10)2+15 5 [−14,15] 15 180.61 dB [1,2 − 2−10] 10 
Single 2−126 (2 − 2−23)2+127 8 [−126,127] 127 1529 dB [1,2 − 2−23] 23 
Double 2−1022 (2 − 2−52)2+1023 11 [−1022,1023] 1023 12318 dB [1,2 − 2−52] 52 

 
▪ Rules for arithmetic operations: 

✓ 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 ÷  (+∞) = ±0 
✓ 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 ÷  (0) = ±∞ 
✓ (+∞) × 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 = ±∞ 

✓ 𝑁𝑎𝑁 + 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑁𝑎𝑁 
✓ (0)  ÷  (0) = 𝑁𝑎𝑁  (±∞) ÷ (±∞) = 𝑁𝑎𝑁 
✓ (0)  ×  (±∞) = 𝑁𝑎𝑁  (∞) + (−∞) = 𝑁𝑎𝑁 

 
Examples: 
▪ F43DE962 (single): 1111 0100 0011 1101 1110 1001 0110 0010 

𝑒 + 𝑏𝑖𝑎𝑠 =  1110 1000 =  232 →  𝑒 =  232 − 127 = 105 
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 =  1.011 1101 1110 1001 0110 0010 =  1.4837 
𝑋 =  − 1.4837 × 2105 = −6.1085 × 1031 

 
▪ 007FADE5 (single): 0000 0000 0111 1111 1010 1101 1110 0101 

𝑒 + 𝑏𝑖𝑎𝑠 =  0000 0000 = 0 →  𝐷𝑒𝑛𝑜𝑟𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑒 = − 126 
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 =  0.111 1111 1010 1101 1110 0101 = 0.9975 
𝑋 =   0.9975 × 2−126 = 1.1725 × 10−38 

e+bias =  0 f=0 

E p

biased exponent significand

e+bias =  0 f0 

E p

biased exponent significand

...

- +

... ......

Underflow region
(or denormal numbers)

Overflow region
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ADDITION/SUBTRACTION 

 
𝑏1 = ±𝑠12𝑒1, 𝑠1 = 1. 𝑓1  𝑏2 = ±𝑠22𝑒2, 𝑠1 = 1. 𝑓2 

 
→ 𝑏1 + 𝑏2 = ±𝑠12𝑒1 ± 𝑠22𝑒2 

 
If 𝑒1 ≥ 𝑒2, we simply shift 𝑠2 to the right by 𝑒1 − 𝑒2 bits. This step is referred to as alignment shift. 

𝑠22𝑒2 =
𝑠2

2𝑒1−𝑒2
2𝑒1 

→ 𝑏1 + 𝑏2 = ±𝑠12𝑒1 ±
𝑠2

2𝑒1−𝑒2
2𝑒1 = (±𝑠1 ±

𝑠2

2𝑒1−𝑒2
) × 2𝑒1 = 𝑠 × 2𝑒 

 

→ 𝑏1 − 𝑏2 = ±𝑠12𝑒1 ∓
𝑠2

2𝑒1−𝑒2
2𝑒1 = (±𝑠1 ∓

𝑠2

2𝑒1−𝑒2
) × 2𝑒1 = 𝑠 × 2𝑒 

 
▪ Normalization: Once the operators are aligned, we can add. The result might not be in the format 1. 𝑓, so we need to 

discard the leading 0’s of the result and stop when a leading 1 is found. Then, we must adjust 𝑒1 properly, this results in 𝑒. 

✓ For example, for addition, when the two operands have similar signs, the resulting significand is in the range [1,4), thus 

a single bit right shift is needed on the significant to compensate. Then, we adjust 𝑒1 by adding 1 to it (or by left shifting 

everything by 1 bit). When the two operands have different signs, the resulting significand might be lower than 1 (e.g.: 
0.000001) and we need to first discard the leading zeros and then right shift until we get 1. 𝑓. We then adjust 𝑒1 by 

adding the same number as the number of shifts to the right on the significand. 
 

Note that overflow/underflow can occur during the addition step as well as due to normalization. 
 

Example: 𝑠3 = (±𝑠1 ±
𝑠2

2𝑒1−𝑒2
) = 00011.1010 

First, discard the leading zeros: 𝑠3 = 11.1010 
Normalization: right shift 1 bit: 𝑠 = 𝑠3 × 2−1 = 1.11010 

Now that we have the normalized significand 𝑠, we need to adjust the exponent 𝑒1 by adding 1 to it: 𝑒 = 𝑒1 + 1: 
(𝑠3 × 2−1) × 2𝑒1+1 = 𝑠 × 2𝑒 = 1.1101 × 2𝑒1+1 

 
Example: 𝑏1 = 1.0101 × 25, 𝑏2 = −1.1110 × 23 

𝑏 = 𝑏1 + 𝑏2 = 1.0101 × 25 −
1.1110

22 × 25 = (1.0101 − 0.011110) × 25 

 
1.0101 − 0.011110 = 0.11011. To get this result, we convert the operands to the 2C representation (you can also do 

unsigned subtraction if the result is positive). Here, the result is positive. Finally, we perform normalization: 
→ 𝑏 = 𝑏1 + 𝑏2 = (0.11011) × 25 = (0.11011 × 21) × 25 × 2−1 = 1.1011 × 24 

 
Example (Subtraction): 𝑏1 = 1.0101 × 25, 𝑏2 = 1.111 × 25 

𝑏 = 𝑏1 − 𝑏2 = 1.0101 × 25 − 1.111 × 25 = (1.0101 − 1.111) × 25 

 
To subtract, we convert to 2C representation: 𝑅 = 01.0101 − 01.1110 = 01.0101 + 10.0010 = 11.0111. Here, the result 

is negative. So, we get the absolute value (|𝑅| = 2𝐶(1.0111) = 0.1001) and place the negative sign on the final result: 
→ 𝑏 = 𝑏1 − 𝑏2 = −(0.1001) × 25 

 
Examples: 
✓ 𝑋 = 50DAD000 – D0FAD000:  

50DAD000: 0101 0000 1101 1010 1101 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10100001 = 161 → 𝑒 = 161 − 127 = 34  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.10110101101 
50DAD000 = 1.10110101101 × 234 

 
D0FAD000: 1101 0000 1111 1010 1101 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10100001 = 161 → 𝑒 = 161 − 127 = 34  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.11110101101 

D0FAD000 = −1.11110101101 × 234 

 
𝑋 = 1.10110101101 × 234 + 1.11110101101 × 234 (unsigned addition) 

 
𝑋 = 11.1010101101 × 234 = 1.11010101101 × 235  
𝑒 + 𝑏𝑖𝑎𝑠 = 35 + 127 = 162 = 10100010 
𝑋 = 0101 0001 0110 1010 1101 0000 0000 0000 = 516AD000 
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✓ 𝑋 = 60A10000 + C2F97000:  
60A10000: 0110 0000 1010 0001 0000 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 11000001 = 193 → 𝑒 = 193 − 127 = 66  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.0100001 
60A10000 = 1.0100001 × 266 

 
C2F97000: 1100 0010 1111 1001 0111 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10000101 = 133 → 𝑒 = 133 − 127 = 6  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.11110010111 

C2F97000 = −1.11110010111 × 26 

 
𝑋 = 1.0100001 × 266 − 1.11110010111 × 26 

𝑋 = 1.0100001 × 266 −
1.11110010111

260 × 266 

Representing the division by 260 requires more than 𝑝 + 1 = 24 bits. Thus, we can approximate the 2nd operand with 0. 

 
𝑋 = 1.0100001 × 266 
𝑋 = 0110 0000 1010 0001 0000 0000 0000 0000 = 60A10000 

 

MULTIPLICATION 

𝑏1 = ±𝑠12𝑒1, 𝑏2 = ±𝑠22𝑒2 

 
→ 𝑏1 × 𝑏2 = (±𝑠12𝑒1) × (±𝑠22𝑒2) = ±(𝑠1 × 𝑠2)2𝑒1+𝑒2 

 
Note that 𝑠 = (𝑠1 × 𝑠2) ∈ [1,4). This means that the result might require normalization. 

 
Example: 𝑏1 = 1.100 × 22, 𝑏2 = −1.011 × 24, 

→ 𝑏 = 𝑏1 × 𝑏2 = −(1.100 × 1.011) × 26 = −(10,0001) × 26, 

 
Normalization of the result: 𝑏 = −(10,0001 × 2−1) × 27 = −(1,00001) × 27. 

 
Note: If the multiplication requires more bits than allowed by the representation (32, 64 bits), we have to do truncation or 
rounding. It is also possible that overflow/underflow might occur due to large/small exponents and/or multiplication of 
large/small numbers. 

 
Examples:  
✓ 𝑋 = 7A09D300  0BEEF000:  

7A09D300: 0111 1010 0000 1001 1101 0011 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 11110100 = 244 → 𝑒 = 244 − 127 = 117  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.0001001110100110000   
7A09D300 = 1.000100111010011 × 2117 

 
0BEEF000: 0000 1011 1110 1110 1111 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 00010111 = 23 → 𝑒 = 23 − 127 = −104  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.1101110111100000000 
0BEEF000 = 1.11011101111 × 2−104 

 
𝑋 = 1.000100111010011 × 2117 × 1.11011101111 × 2−104 
𝑋 = 10.00000010100011010111111101 × 213 = 1.000000010100011010111111101 × 214 = 1.6466 × 104 
𝑒 + 𝑏𝑖𝑎𝑠 = 14 + 127 = 141 = 10001101 

 
𝑋 = 0100 0110 1000 0000 1010 0011 0101 1111 = 4680A35F (four bits were truncated) 

 
✓ 𝑋 = 0B09A000  8FACC000:  

0B092000: 0000 1011 0000 1001 1010 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 00010110 = 22 → 𝑒 = 22 − 127 = −105  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.0001001101 
0B092000 = 1.0001001101 × 2−105 

 
8FACC000: 1000 1111 1010 1100 1100 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 00011111 = 31 → 𝑒 = 31 − 127 = −96  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.010110011 
0FACE000 = 1.010110011 × 2−96 

 
𝑋 = 1.0001001101 × 2−105 × −1.010110011 × 2−96 = −1.0111001101111010111 × 2−201 = −0 × 2−126 
𝑒 + 𝑏𝑖𝑎𝑠 = −201 + 127 = −74 < 0 

 
Here, there is underflow (not even denormalized numbers different than zero can represent it). Then 𝑋 − 0. 
𝑋 = 1000 0000 0000 0000 0000 0000 0000 0000 = 80000000 
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DIVISION 

 
𝑏1 = ±𝑠12𝑒1, 𝑏2 = ±𝑠22𝑒2 

 

→
𝑏1

𝑏2
=

±𝑠12𝑒1

±𝑠22𝑒2
= ±

𝑠1

𝑠2
2𝑒1−𝑒2 

 

Note that 𝑠 = (
𝑠1

𝑠2
) ∈ (1/2,2). This means that the result might require normalization. 

 
Example: 

𝑏1 = 1.100 × 22, 𝑏2 = −1.011 × 24 

 

→
𝑏1

𝑏2
=

1.100 × 22

−1.011 × 24 = −
1.100

1.011
2−2 

1.100

1.011
: unsigned division, here we can include as many fractional bits as we want. 

 
With 𝑥 = 4 (and 𝑎 = 0) we have: 

1100𝟎𝟎𝟎𝟎

1011
 1100𝟎𝟎𝟎𝟎 = 10101(1011) + 11 

𝑄𝑓 = 1,0101, 𝑅𝑓 = 00,0011 

 
If the result is not normalized, we need to normalized it. In this example, we do not need to do this. 

→
𝑏1

𝑏2
=

1.100 × 22

−1.011 × 24 = −1.0101 × 2−2 

 
Example: 
 
✓ 𝑋 = 49742000  40490000:  

49742000: 0100 1001 0111 0100 0010 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10010010 = 146 → 𝑒 = 146 − 127 = 19  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.1110100001000000000 
497420000 = 1.1110100001 × 219 

 
40490000: 0100 0000 0100 1001 0000 0000 0000 0000 

𝑒 + 𝑏𝑖𝑎𝑠 = 10000000 = 128 → 𝑒 = 128 − 127 = 1  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 = 1.1001001000000000000 
0BEEF000 = 1.1001001 × 21 

 

𝑋 =
1.1110100001 × 219

1.1001001 × 21
 

 
Alignment: 

1.1110100001

1.1001001
=

1.1110100001

1.1001001000
=

11110100001

11001001000
 

 

Append 𝑥 =  8 zeros: 
11110100001𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

11001001000
 

 
Integer division 

𝑄 = 100110110, 𝑅 = 1011101000 → 𝑄𝑓 = 1.00110110 

 
 
 
 
 
 
 

Thus:  𝑋 =
1.1110100001×219

1.1001001×21 = 1.0011011 × 218 = 1.2109375 × 218 = 317440 

𝑒 + 𝑏𝑖𝑎𝑠 = 18 + 127 = 145 = 10010001 

 
𝑋 = 0100 1000 1001 1011 0000 0000 0000 0000 = 489B0000 

  

0000000000100110110

1111010000100000000

11001001000

101011001000

11001001000

100100000000

11001001000

101011100000

11001001000

100100110000

11001001000

10111010000

11001001000
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DUAL FIXED-POINT (DFX) ARITHMETIC 
 
▪ Floating point (FP) and fixed point (FX) arithmetic are the standard numerical representations. Floating point features a large 

dynamic range at the expense of a large resource usage. On the other hand, fixed point requires fewer resources, but it 
delivers a low dynamic range. Dual fixed point (DFX) arithmetic is an alternative representation that overcomes the limitations 
of FX (it greatly improves dynamic range) without the high resource complexity of floating point. 

 
▪ 𝑛 − 𝑏𝑖𝑡 Dual Fixed Point (DFX) number: exponent (E), signed 

significand (X) with 𝑛 − 1 bits. 

▪ Exponent ‘E’: It selects between two scalings for the significand X. 
Thus, there are two possible cases for a DFX number 𝐷:  

𝐷 = { 
𝑛𝑢𝑚0:  𝑋. 2−𝑝0 , 𝑖𝑓 𝐸 = 0

𝑛𝑢𝑚1:  𝑋. 2−𝑝1 , 𝑖𝑓 𝐸 = 1
, 𝑝0 > 𝑝1 

✓ 𝑛𝑢𝑚0: It has 𝑝0 fractional bits. 𝑛𝑢𝑚1: It has 𝑝1 fractional bits.  

▪ Notation of a DFX number: 𝑛_𝑝0_𝑝1 or [𝑛 𝑝0 𝑝1]. 
 

BOUNDARY VALUE 
▪ The scaling (value of E) is determined by the boundary value B: 

𝐸 = { 
0 (𝑛𝑢𝑚0), −𝐵 ≤ 𝐷 < 𝐵
1 (𝑛𝑢𝑚1),      𝐷 < −𝐵 𝑎𝑛𝑑 𝐷 ≥ 𝐵

 

 
▪ Boundary value B:  Defined as the next incremental value after the maximum positive number of 𝑛𝑢𝑚0: 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑛𝑢𝑚0 =  
−2(𝑛−1)−1

2𝑝0
 𝑡𝑜

2(𝑛−1)−1 − 1

2𝑝0
  

𝐵 =
2(𝑛−1)−1 − 1

2𝑝0
+ 1 𝐿𝑆𝐵 =

2(𝑛−1)−1 − 1

2𝑝0
+

1

2𝑝0
→ 𝐵 = 2𝑛−𝑝0−2 

 
 
▪ If we have a 𝑛𝑢𝑚0 number with 𝑛 bits, it seems that we could convert it into a 𝑛𝑢𝑚1 number with 𝑛 bits (by truncating 

𝑝0 − 𝑝1 LSBs and by sign-extending the MSB of the significand). However, we cannot do this, as the number will not be in 

the 𝑛𝑢𝑚1 range (𝐷 < −𝐵 𝑎𝑛𝑑 𝐷 ≥ 𝐵). 
▪ To convert a 𝑛𝑢𝑚0 number that does not fit with 𝑛 bits (but with 𝑛 + 𝑥 bits, format (𝑛 + 𝑥)_𝑝0_𝑝1) into a 𝑛𝑢𝑚1 number  that 

might fit with 𝑛 bits (format 𝑛_𝑝0_𝑝1), we need to discard the 𝑝0 − 𝑝1 LSBs and then sign-extend the significand by 𝑝0 − 𝑝1 −
𝑥 bits.  

 
Example: Format 16_7_3 to 14_7_3: 𝑥 = 2, 𝑝0 − 𝑝1 = 4 

 
𝑛𝑢𝑚0 number in format 16_7_3:    0 1011 0111.0101101 

Convert to 14_7_3: it has to be 𝑛𝑢𝑚1: 1 111011 0111.010  (𝑛𝑢𝑚0 would not work as we will lose MSBs) 

 
 
RANGES FOR 𝑛𝑢𝑚0 and 𝑛𝑢𝑚1: 

▪ 𝑛𝑢𝑚0 range: There is smaller spacing (2−𝑝0) between consecutive numbers; thus, they are more accurate. 

▪ 𝑛𝑢𝑚1 range: There is larger spacing (2−𝑝1) between consecutive numbers; thus, they are less accurate. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
▪ Range for 𝑛𝑢𝑚0: [−2𝑛−𝑝0−2, 2𝑛−𝑝0−2 − 2−𝑝0] 
▪ Range for 𝑛𝑢𝑚1: [−2𝑛−𝑝1−2, −2𝑛−𝑝0−2 − 2−𝑝1] ∪ [ 2𝑛−𝑝0−2 , 2𝑛−𝑝1−2 − 2−𝑝1] 

  

XE

n bits

SIGNED SIGNIFICANT: n-1 bitsEXPONENT

0

p0

n-1

num0:

0

num0 Range

num1 Range



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-5736: Reconfigurable Computing  Summer I 2022 

 

 

13 Instructor: Daniel Llamocca 

DYNAMIC RANGE 
▪ It is defined as the ratio between the largest absolute value and the smallest nonzero absolute value. 

 

✓ Unsigned numbers with 𝑛 bits:  
|2𝑛 − 1|

|1|
= 2𝑛 − 1 → 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 = 20 log10(2𝑛 − 1)  𝑑𝐵 

✓ Signed numbers (2’s complement): [𝑛 𝑝] 
|−2𝑛−1−𝑝|

|2−𝑝|
= 2𝑛−1 → 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 = 20 log10(2𝑛−1)  𝑑𝐵 

✓ Dual fixed point (DFX) numbers: 𝑛_𝑝0_𝑝1 
|−2𝑛−2−𝑝1|

|2−𝑝0|
= 2𝑛−2−𝑝1+𝑝0 → 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 = 20 log10(2𝑛−2−𝑝1+𝑝0)  𝑑𝐵 

 
 

FX TO DFX CONVERSION 

▪ What if we have [𝑛𝑖𝑛 𝑝𝑖𝑛] (signed) and we want to convert to 𝑛_𝑝0_𝑝1? 

 
✓ We first try with 𝑛𝑢𝑚0 (since it is more accurate). 

✓ For 𝑛𝑢𝑚0 we need: −𝐵 ≤ 𝐷 < 𝐵, 𝐵 = 2𝑛−𝑝0−2. Note that 𝐵 − 2−𝑝0 = 𝟎0111. . .11. – 𝐵 =  𝟎10000 … 000. A quick way to 

check this is by aligning the two formats and then comparing the 𝑛𝑖𝑛 − 𝑝𝑖𝑛 − (𝑛 − 1 − 𝑝0) + 1 MSBs of the FX format 

with the MSB (of the significand) of the DFX number. If they are all the same, that means that the number is a 𝑛𝑢𝑚0. 

 
 
 
 
 
 
 
 

✓ If the number is not a 𝑛𝑢𝑚0, we try with 𝑛𝑢𝑚1: 

 
 
 
 
 
 
 
 
✓ If 𝑛𝑢𝑚1 does not work either, it means there is overflow and we need more than 𝑛 bits. 

 
▪ Note: This procedure always starts by checking if the number is 𝑛𝑢𝑚0. A common mistake is to start by checking if the 

number is 𝑛𝑢𝑚1. The procedure only works for continuous ranges, which is not the case of 𝑛𝑢𝑚1. To directly verify that a 

DFX number is a 𝑛𝑢𝑚1, see if we can drop off enough MSBs so as to make it a 𝑛𝑢𝑚0. If the integer part is affected, then 

the number is a 𝑛𝑢𝑚1; otherwise it is a 𝑛𝑢𝑚0. 

 
Examples: 
 
▪ Signed [8 4] to 7_4_3. We first check for 𝑛𝑢𝑚0, then for 𝑛𝑢𝑚1. None of these work, so there is overflow (need more bits). 

 
 
 
 

 
 
 
 
 
▪ Signed [8 4] to 8_4_3. We first check for 𝑛𝑢𝑚0, which does not work. Then, we check for 𝑛𝑢𝑚1, which works. 

 

 

 

 
  

nin-pin pin

n-1-p0 p0

0

E

num0

[nin pin]

nin-pin pin

n-1-p1 p1

1

E

num1

[nin pin]

1 0 1 1.1 0 1 0

0 1 1 1 0 1 07_4_3, num0

7 bits

8 bits

[8 4] 1 0 1 1.1 0 1 0

1 0 1 1 1 0 17_4_3, num1

7 bits

8 bits

[8 4]

1 0 1 1.1 0 1 0

0 0 1 1 1 0 1 08_4_3, num0

8 bits

[8 4] 1 0 1 1.1 0 1 0

8_4_3, num1

8 bits

8 bits

[8 4]

1 1 0 1 1 1 0 1
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Examples 
▪ Convert the following signed fixed-point numbers in format [12 8] to Dual Fixed Point Format 12_8_4: 

 
✓ E.EE: 

1110.1110 1110   To DFX 12_8_4 (𝑛𝑢𝑚0): 011011101110 = 6EE 
 

✓ A.CD: 

1010.1100 1101   To DFX 12_8_4 (𝑛𝑢𝑚0): 001011001101 = not a 𝑛𝑢𝑚0! 

 To DFX 12_8_4 (𝑛𝑢𝑚1): 111110101100 = FAC 

✓ C.1B: 

1100.0001 1011   To DFX 12_8_4 (𝑛𝑢𝑚0): 010000011011 = 41B 

 
✓ 8.B9: 

1000.1011 1001   To DFX 12_8_4 (𝑛𝑢𝑚0): 000010111001 = not a 𝑛𝑢𝑚0! 

 To DFX 12_8_4 (𝑛𝑢𝑚1): 111110001011 = F8B 

 
✓ 3.0A: 

0011.0000 1010   To DFX 12_8_4 (𝑛𝑢𝑚0): 001100001010 = 30A 

 

  

DUAL FIXED-POINT ADDITION 
▪ Here, we add two DFX numbers A and B with 𝑛 bits. To do this, we need to follow this procedure: 

✓ Pre-scaling: We get rid of the exponent (E) bit. Then, we align the two (𝑛 − 1)-bit significands (signed FX numbers). 

Here, alignment might require discarding 𝑝0 − 𝑝1 fractional bits (truncation) and sign-extending MSBs by 𝑝0 − 𝑝1 bits. 

Improving DFX Adder accuracy: We can save the 𝑝0 − 𝑝1 truncated LSBs. In the post-scaler, we might be able to shift in 

the truncated LSBs. This only works when A and B have different exponents.  
✓ Fixed-point addition: This is a simple addition of two (𝑛 − 1)-bit significands. Note that in the addition result can have 

up to 𝑛 bits. The format would be either [𝑛 𝑝0] or [𝑛 𝑝1]. 
✓ Post-scaling: The 𝑛-bit FX result must be converted to 𝑛-bit DFX. In some cases, there can be overflow when the result 

cannot fit as a 𝑛𝑢𝑚1 in DFX. 

 
Examples: Addition of numbers in format 8_3_2. The result should be in the same format. 

 
▪ Addition of two 𝑛𝑢𝑚0 numbers: FX addition requires 9 bits. When this FX number is converted to DFX, we notice that it 

cannot be represented as a 𝑛𝑢𝑚0 (unless we change the DFX format to 9_3_2); it will have to be a 𝑛𝑢𝑚1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Addition of two 𝑛𝑢𝑚1 numbers. Addition results in overflow (we need 9 bits to represent the result). Here, the result in 

format 8_3_2 has to include an overflow flag. We can recover from this if we include a carry out (𝑐𝑛) bit in the circuitry.  

 
 
 
 
 
 
 
 
 
  

1 1 0 1 0 0 0 1

1 1 0 0 0 0 1 0

+ 1 0 1 0 0.0 1

1 0 0 0 0.1 0

+ 1 1 0 1 0 0.0 1

1 1 0 0 0 0.1 0

+

1 0 0 1 0 0.1 1

1 1 0

DFX: num0

1 0 0 1 0 0 1 1DFX: num1

Overflow!

DFX FX

FX

0 0 1 0 0 1 1 0

0 1 0 1 1 0 1 1

0 1 0 1 1 1 0 1

+ 1 0 1 1.0 1 1

1 0 1 1.1 0 1

+ 1 1 0 1 1.0 1 1

1 1 0 1 1.1 0 1

+

1 0 1 1 1.0 0 0

1 1 0

0 0 1 1 1 0 0 0

1 1 0 1 1 1 0 0

11111

DFX: num0

DFX: num1

DFX FX

FX
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▪ Addition of a 𝑛𝑢𝑚0 and a 𝑛𝑢𝑚1 number. Addition does not result in overflow, 𝑛𝑢𝑚0 suffices to represent the addition in the 
8_3_2 format. Here, there are two ways: add zero the LSB or retrieve the saved bit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Subtraction of two 𝑛𝑢𝑚1 numbers. The operation does not result in overflow, 𝑛𝑢𝑚0 suffices to represent the final result in 

the 8_3_2 format.  
 
 
 
 
 
 
 
 
 
 
 

 

DUAL FIXED-POINT MULTIPLICATION 
▪ Here, we add two DFX numbers with 𝑛 bits. To do this, we get rid of the exponent (E) bit, and then we only need to multiply 

two (𝑛 − 1)-bit significands in fixed point arithmetic. Then, we convert the FX result into the DFX number. 

▪ Unlike DFX addition, there is no pre-scaling. We just multiply the two signed FX numbers. The result will have 2n-2 bits. We 

need a Post-Scaling stage that converts this FX result into the DFX format. 
 
▪ Examples: DFX multiplication of numbers in [8 3 2] format. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.100110   To DFX 8_3_2 (𝑛𝑢𝑚0): 01110100 = 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0110.10001   To DFX 8_3_2 (𝑛𝑢𝑚0): 00110100 = 34 

 

1 1 0 0 1 1 1 1

0 0 1 0 1 1 0 1

+ 1 0 0 1 1.1 1

0 0 1 0 1.1 0

+ 1 1 0 0 1 1.1 1

1 0 0 1 0 1.1 0

+

1 1 1 0 0 1 0 1

0 0 0

0 1 0 0 1 0 1 0
DFX: num0

1

0 1 0 0 1 0 1 1

1111DFX FX

FX

DFX: num0

OR

1 1 0 1 0 0 0 1

1 1 0 1 1 0 1 1 

- 1 0 1 0 0.0 1

1 0 1 1 0.1 1

- 1 0 1 0 0.0 1

0 1 0 0 1.0 1

+ 1 1 0 1 0 0.0 1

0 0 1 0 0 1 0 1

+

1 1 1 1 0 1.1 0

0 0 0DFX FX FX FX

0 1 1 0 1 0 1 0DFX: num0

7 bits8 bits

8 bits

7 bits

11110.111 x

0001.010  

1 0 0 1 x

1 0 1 0  

0 0 0 0  

1 0 0 1    

0 0 0 0      

1 0 0 1        

1 0 1 1 0 1 0  

00001.001 x

0001.010  

0 1.0 1 1 0 1 0

1 0.1 0 0 1 1 0

0 1 1 1 0 1 1 1 x

0 0 0 0 1 0 1 0

Unsigned FXSigned FX

Signed FX

Unsigned
integer

Signed FX
Mult. Result

DFX

11011.01 x

1110.101  

1 0 0 1 1 x

1 0 1 1  

1 0 0 1 1  

1 0 0 1 1    

1 0 0 1 1        

1 1 0 1 0 0 0 1  

00100.11 x

0001.011  

0 1 1 0.1 0 0 0 1

1 1 1 0 1 1 0 1 x

0 1 1 1 0 1 0 1

Unsigned FXSigned FX

Unsigned
integer

Signed FX
Mult. Result

DFX
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